Level3 Measurement of "Shoubu System B"

Executive Summary

Comparison between now and then

Shoubu SystemB	Nov. 2018	June 2018
Rmax (GFLOPS)	1063.3TFLOPS	857.6TFLOPS
Nmax (Matrix Size)	1,904,640	1,388,800
Num. of Nodes	60	50
Node CPU Memory	64GB	32GB
GFLOPS/W	17.6	18.4
Measurement Quality	Level3	Level1
Measurement Nodes	Full (60)	Partial (20)
Measurement NW comp.	Full (2)	Full (2)
Including internal cooling device	Yes (Coolant Circulation Pump and Valve)	No
Including storage device	No (Not Use in HPL)	
Efficiency Enhancement	Liquid Temp. Optimizing	N.A

Our Motivation

• Maintain #1 place of Green500 List Rmax performance within TOP500 List is required.

Boosting Rmax performance
Our target is Rmax over 1.0 Peta FLOPS.

Level 3 quality power measurement

Some people say, "Are ExaScaler machines really energy efficient?" and I promised, we will try Level2 or 3 next time.

Whole system power consumption is measured.

Coolant Temperature optimization is added.

Agenda

- Executive Summary of latest TOP500 measurement
- Our motivation
- How to Performance boost
- Level1 & Level3 measurement
- Cooling power optimization
- Estimated PUE of Shoubu System B
- Collaboration progress
- Conclusion

How to performance boost

Increasing the number of Nodes

• Previous: 50nodes

Current: 60nodes

- Expanding Nmax(Matrix size)
 - Previous: 1,388,800 -> 69,440x69,440 / Each Accelerator (PEZY-SC2)
 - Current: 1,904,640 -> 79,360x79,360 / Each Accelerator (PEZY-SC2)

To realize them, Node CPU memory is enlarged from 32GB to 64GB

Shoubu System B block diagram

Level1 Measurement

Level3 Measurement

Level3 Measurement Pictures

Compute Node @ Input point of HVDC

Clump sensors are used at all measurement points

Sub-sytems@ In MCCB

1st Measurement result

2018/11/14

Breakdown of subsystem power

Cooling pump is using power allmost all in subsystems.

Cooling power optimization

 Reduction of Pump Power Add Inverter(VVVF) control

Cooling power optimization

 Coolant circulation speed is controlled to keep around 35°C during Core phase.

Freq: 50Hz to 17Hz

Total Subsystem: 0.7kW

Cooling Pump(+inv, flow ctl): 0.5kW

FE: 0.2kW

Final Measurement result

17.6 GFlops/W @ Level 3

PUE (Power Usage Effectiveness)

= (cooling + server power) / (server power)

- System Internal PUE: (0.5+59.9)/59.9 = 1.01
- Estimated Total PUE including facilities is around 1.2
 - Chilling water is generated by ACCS facilities
 - RIKEN ACCS COP is around 4-5 in October.
 COP: Coefficient Of Performance
 - Combine Turbo-chiller, Free-Cooling Tower, and well water
 - Shared with HOKUSAI, AHU and ShoubuB

	Air Cooling	Liquid Immersion
On board Fan Power	Accumulated to server power	Not Required
Leakage Power	High(Hi-temperature)	Low(Low-temperature)
Absolute Total Power	High	Low
PUE at same calculation	Lower(Advantageous)	Higher(Dis-advantageous)

2018/11/14 Green500 BOF@SC2018 15

Collaboration: Heterogeneous Many Core Project

Large-Scale Computational Science on Heterogeneous Many Core Computers

Visit Booth: 821

We have been done:

- MD Simulation of Water
 - Measured effective performance 3.8PFLOPs(10.6%) on Gyoukou
- 2. Simulation of Rings of Saturn
 - Measured effective performance 47.9PFLOPs(40%) on SunwayTaihuLight
 - 10.6PFLOPs(23.5%) on Gyoukou
- 3. Simulation of Compressible Flow Using "FORMULA"
 - Measured effective performance 4.78PFLOPs(21.5%) on Gyoukou
- 4. Real Time Simulation of Cerebellum of Macaca
 - Realize Cerebellum of Macaca using 8 billion neuron and synapse and simulate learning process of eye movement.
 - Measured effective performance 1.85PFLOPs on Gyoukou
- Accelerate Homology Analysis for Bacteria analysis in Flora
 - About 10-100 times speed up
- Double double precision operation in BLAS (Rgemm)
 - 76% of peak performance

Level3 Measurement is not so difficult for such under 100KW scale machines.

- Understanding the regulation is not so easy.
- Great help to find out hiding overhead.

We never stop developing MOST power efficient supercomputer!